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ABSTRACT
Scientists and practitioners have long debated about the speci-
fic visual skills needed to excel at hitting a pitched baseball. To 
advance this debate, we evaluated the relationship between 
pre-season visual and oculomotor evaluations and pitch-by- 
pitch season performance data from professional baseball bat-
ters. Eye tracking, visual-motor, and optometric evaluations col-
lected during spring training 2018 were obtained from 71 
professional baseball players. Pitch-level data from Trackman 
3D Doppler radar were obtained from these players during the 
subsequent season and used to generate batting propensity 
scores for swinging at pitches out of the strike zone 
(O-Swing), swinging at pitches in the strike zone (Z-Swing), 
and swinging at, but missing pitches in the strike zone 
(Z-Miss). Nested regression models to tested which evaluation(s) 
best predicted standardised plate discipline scores as well as 
batters’ highest attained league levels during the season. 
Results indicated that visual evaluations relying on eye tracking 
(smooth pursuit accuracy and oculomotor processing speed) 
significantly predicted the highest attained league level andpro-
pensity scores associated with O-Swing and Z-Swing, but not 
Z-Miss. These exploratory findings indicate that batters with 
superior visual and oculomotor abilities are more discerning at 
the plate. These results provide new information about the role 
of vision in baseball batting.
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1. Introduction

Hitting a pitched ball is among the most iconic of sporting activities. Across baseball, 
softball, cricket and other batting sports, the rules of the game have created situations that 
very precisely test the limits of human’s abilities to see and react. By specifying the 
dimensions of the strike zone, and the distance and height between the pitcher and batter, 
these sports have created scenarios where the competitive balance of the game unfolds 
over a few hundred milliseconds, with balls moving at peak velocities exceeding the 
capacity of the human oculomotor system (Spering & Gegenfurtner, 2008; Watts & 
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Bahill, 1991). The extreme challenge of this endeavour is punctuated by the fact that 
hitting successfully in one out of three plate appearances can garner contracts greater 
than twenty million dollars a year.

In baseball, for example, fastball pitches regularly exceed 95 miles per hour, travelling 
approximately 55 feet from the pitcher’s hand to home plate in under 350 ms. Through 
this process, the batter must decipher the pitch, project its trajectory, decide to swing or 
not, and coordinate the timing and movement of a 2.25-inch diameter bat to intercept 
a 3-inch ball. To have the best chance to hit the ball, batters look for cues that tip the pitch 
during the wind up, like the placement of the pitcher's fingers relative to the seams, and 
extract movement information from the arm and the ball, including the spin, to project 
the trajectory relative to the strike zone.

The unique skills that allow expert batters to accomplish these feats have been an area 
of substantial scientific interest. Studies contrasting batters at different achievement levels 
show that experts demonstrate better pitch anticipation than non-experts, and that such 
pitch anticipation positively correlates to batting statistics (Müller & Fadde, 2016). It has 
been shown that anticipating the pitch type at the moment the ball is released relies on 
reading pitcher kinematics, particularly those in the hand-shoulder region (Kato & 
Fukuda, 2002), and that anticipating where the pitch eventually crosses the plate entails 
tracking ball flight early in its path, at least over the first 80 ms (Müller et al., 2017; Paull & 
Glencross, 1997). Moreover, studies involving eye tracking revealed that expert batters 
utilise information from early ball tracking to generate predictive saccades to place the 
eye ahead of the trajectory of the moving ball (Bahill & Laritz, 1984; Land & McLeod, 
2000; D. L. Mann et al., 2013). In this way, the batter can “wait” for the ball to enter the 
visual field, circumventing the problem of tracking a ball that moves faster than the 
oculomotor system can resolve.

Collectively these abilities reflect a combination of receptive visual abilities that trans-
form the light signal into the neural code and perceptual visual abilities that process the 
input for meaning, context, intention, and action, so-called visual “hardware” and “soft-
ware”. While there is considerable evidence that software abilities such as anticipation, 
pattern recognition, and visual search are elevated in higher performing athletes (see 
meta-analyses by Lebeau et al., 2016; D. Y. Mann et al., 2007; Voss et al., 2010), there is 
less evidence linking visual-hardware to greater athletic expertise. Therefore, while there 
is evidence that visual acuity (Laby et al., 1996) and contrast sensitivity (Hoffman et al., 
1984), are better in higher-level athletes, there is still an incomplete picture of how these 
traits might impact performance.

Given the potential value of establishing characteristics that predict future perfor-
mance in baseball, there has been a growing effort to map specific visual skill to on-field 
batting performance. For instance, visual-motor skills tested on the Nike Sensory Station 
were shown to predict several game statistics including on-base percentage, walk rate, 
and strikeout rate (Burris et al., 2018). Additionally, athletes with better dynamic visual 
abilities, those that rely on acuity and contrast sensitivity judgements performed under 
temporal constraints, were shown to produce better “plate discipline” batting statistics 
(e.g. O-Swing Propensity, which is discussed in the Methods section below; Laby et al., 
2019). Furthermore, when compared between batters and pitchers with similar levels of 
experience, batters were shown to produce better performance on measures of visual 
acuity and depth perception than pitchers (Klemish et al., 2018), indicating that these 
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skills are specific to the demand of hitting pitched ball, not throwing a ball. Lastly, eye- 
tracking research suggested that batters shifting visual fixations more frequently between 
pitcher and home plate prior to batting showed better on-base percentage and batting 
average (Hunfalvay et al., 2019).

While the studies presented above have provided novel and systematic insight into the 
relationship between visual abilities and batting performance, they have tended to use 
relatively narrowly defined visual and/or perceptual-cognitive assessments, resulting in 
dependence on specific assessment modality (e.g. responding with hand-held devices). In 
addition, they typically focused on batters’ performance measures (e.g. on-base percen-
tage) that do not control for the contribution of the defence (though see Laby et al., 2018). 
In the present study, we aimed to improve upon these limitations by making use of a wide 
range of assessments, collected as part of pre-season evaluations that include measures of 
refractive error, quantitative eye tracking, and visual-motor abilities. Such an array of 
visual assessments allows for comparison of the relative importance among assessment 
modalities, in addition to the visual constructs that are captured by the test batteries. To 
explore the role of these abilities on batting performance, we make use of pitch-by-pitch 
plate discipline metrics (collected during the subsequent season) that rely only on the 
batter’s abilities and are not influenced by the fielder’s defensive performance. By 
mapping a broad range of visual assessments to context-controlled plate discipline 
statistics this study aims to offer initial evidence about which aspect of visual skill, in 
which assessment modality, contributes the most to batting performance. It was hypothe-
sised that superior performance on these assessments would correspond to better base-
ball performance.

2. Methods

2.1. Participants

The study included a sample of 71 professional minor league baseball batters (M = 
22.1 years, SD = 2.5 years). Table 1 reports the sample distribution regarding handedness 
and League Level, defined as the highest minor league level attained by a given batter 
during the 2018 season. Multiple empirical datasets contributed to obtaining the sample 
and they formed two general categories, one including visual assessment (see 2.2. Visual 
Assessments) and the other involving pitch-by-pitch performance measured throughout 
the 2018 season (see 2.3. Plate Discipline Variables). Merging the datasets via encrypted 
IDs led to an initial sample of 109 batters. This dataset was further adjusted because of 
missing values and potential collinearity issues among visual assessment variables. 
Specifically, only batters with less than 10 missed observations out of a total of 22 visual 

Table 1. Sample characteristics of included players.
Handedness League level
Left-hand Batter 28 Rookie 19
Right-hand Batter 43 Low-A 5

A 12
High-A 15
AA 11
AAA 9

(sum) 71 71
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assessment variables were included, and the number of visual assessment variables was 
reduced to 14 by generating composite variables among those of high bivariate correlation 
(i.e. Pearson rs >.50) and conceptual relatedness (see Section 2.2). These steps resulted in 
a final sample of 71 batters and an overall missing data rate of 3.1% in the final dataset.

All data were shared under a secondary-data protocol [IRB B0706] approved by the 
Duke University Institutional Review Board and the Human Research Protection Office of 
the US Army Medical Research and Materiel Command under separately reviewed 
protocol. Under these protocols, all data were collected for “real world use”, without 
informed consent, and shared via encrypted IDs without inclusion of any protected health 
information. These data, therefore, conform to U.S. Department of Health and Human 
Services, “Regulatory considerations regarding classification of projects involving real 
world data” (DHHS, 2015) and also to the ethical principles of the Declaration of Helsinki.

2.2. Visual assessments

Assessments were performed between March and May 2018, by an optometrist retained 
by the professional baseball franchise (author FE). Assessments took place at the team’s 
spring training facility, primarily during the player’s first two weeks of training camp. 
Three separate evaluation stations were set up to capture visual assessment data. The 
assessments at each station took between 5 and 12 minutes to complete and while these 
were generally done sequentially, occasionally, a player’s assessment took place over the 
course of two days if they were unable to complete all stations in one day. Instructions for 
each assessment were given in English and when necessary were augmented with 
instructions in Spanish. In each case, demonstrations and practice were given with the 
equipment prior to testing.

2.2.1. Eye-tracking assessments
Quantitative eye tracking was performed using customised sub-sets of the RightEye LLC 
(Bethesda, MD), Neuro and Performance Vision assessment batteries. Testing was 
performed in a private, quiet testing room with participants seated with their eyes in 
front of an NVIDIA 24-inch 3D Vision monitor at a distance of 60 cm. Eye tracking was 
achieved through a 12-inch SMI, 120 Hz remote eye tracker, connected to an Alienware 
gaming system and a Logitech (model Y-R0017) wireless keyboard and mouse. 
Participants’ heads were unconstrained during the test, although they were instructed 
to sit still and warned with indicators on the screen if the eye tracking was interrupted. 
The RightEye test battery began with a digital confirmation that the eyes were centred on 
the screen (with a feedback icon to facilitate adjustment), followed by a 9-point calibra-
tion test in which tracking fidelity was evaluated over the full expanse of the screen. Upon 
successful calibration, the task battery commenced. For each successive task, text and 
animated instructions were provided. Detailed information about the tasks can be found 
elsewhere (Murray et al., 2019) and the following measures were calculated from perfor-
mance on the test battery for analysis in the current study:

● Dynamic Visual Acuity is a measure of the ability to recognise fine details of an 
object moving across a monitor screen while the participant is instructed to keep 
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their head still. Performance is quantified in seconds, with smaller values reflecting 
better performance.

● Cardinal Reaction Time is the time required for participants to move visual gaze 
from the central fixation mark to pictorial targets appearing at eight cardinal 
positions. Performance is quantified in seconds, with smaller values indicating 
better performance.

● Simple Reaction Time is the time required to press a keyboard button in response 
to presentation of pictorial targets displayed at fixation. Responses are measured in 
seconds with smaller values indicating better performance.

● Smooth Pursuit Accuracy is a composite variable reporting the percentage of time 
that participants are able to maintain their gaze within three degrees of a smoothly 
moving black target dot. This measure is calculated as the average over three pursuit 
trajectories; circular, horizontal and vertical with larger values indicating better 
performance.

● General Oculomotor Latency, General Oculomotor Speed, and General 
Processing Speed are three composite time variables calculated by averaging similar 
measures from a choice reaction time task and a discriminant reaction time task. 
Both tasks require participants to fixate centrally, locate and foveate on incoming 
targets that project inward from the periphery of the screen, and make manual 
responses to indicate the identity of the target once acquired visually. Oculomotor 
Latency refers to the elapsed time from the appearance of the target to the moment 
gaze is averted from the central fixation mark. Oculomotor Speed refers to the 
elapsed time from the moment when gaze is averted from the central fixation to the 
moment when gaze arrives at the incoming pictorial target. Processing Speed refers 
to time elapsed between arrival of gaze to the incoming target and the moment when 
responses are registered with a keyboard button press. Measures are referred to as 
“general” because they are averaged over identical metrics for two tasks, in order to 
create a more robust measure that captures this construct. All are measured in 
seconds with smaller values indicating better performance.

2.2.2. Visual-motor assessments
Visual-motor skills were assessed using the Senaptec LLC (Beaverton, OR) Sensory 
Station Tablet. This device presents a battery of computerised visual-motor tasks, each 
designed to evaluate a specific facet of a participant’s visual-motor abilities. Testing was 
performed at two distances; 10 ft and 18”-24”. The tablet was mounted on a sturdy, 
adjustable tripod, with the centre of the screen positioned at eye level. Tasks performed at 
distance were conducted by the participants using a remote controller connected to the 
Tablet via Bluetooth. The remaining tasks were performed by the participant directly on 
the tablet touch screen at arm’s length. Detailed information about the tasks can be found 
elsewhere (Wang et al., 2015) and the following measures were calculated from perfor-
mance on the test battery for analysis in the current study.

● Visual Clarity is a measure of static visual acuity obtained by having participants 
report the orientation of gaps in a Landolt ring, presented at distance, and adjusted 
in size according to an adaptive staircase procedure. Scores are reported in LogMAR 
units with smaller values indicating better performance.
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● Contrast Sensitivity measures the minimal lightness-darkness contrast shown in 
static ring-shaped targets displayed at distance. Stimuli are presented at 18 cycles- 
per-degree and adjusted in contrast according to an adaptive staircase procedure. 
Results are reported in log contrast with larger values indicating better performance.

● Near-Far Quickness is a measure of how quickly participants could visually accom-
modate back and forth between near and far visual targets in 30 s, without sacrifi-
cing response accuracy. Scores indicate the number of correctly reported targets 
with larger values indicating better performance.

● Multiple Object Tracking is a measure of how well participants could maintain 
accurate spatial tracking of multiple moving targets, presented with moving non- 
targets according to an adaptive staircase schedule. Scores are computed as 
a composite of movement speed thresholds and tracking capacity, with larger values 
indicating better performance.

● Perception Span is a measure of spatial working memory derived by having 
participants recreate the locations of briefly presented targets that are flashed in 
a grid of circles. The number of targets and the size of the grid increases with correct 
responses, and the final score indicates the combined total of correct responses, 
minus errors, across all levels. Larger values indicate better performance.

● Reaction Time is the elapsed time between when rings on the touchpad change 
colour, and when participants are able to remove their index finger from the touch- 
sensitive screen. Scores are reported in seconds with smaller values indicating better 
performance.

2.2.3. Auto-refraction
An Ovitz (West Henrietta, NY) P10 autorefractor was utilised to capture objective 
measurement of the refractive error of each eye, for each individual. Measurements 
were taken in a dimly lit and quiet room and participants were instructed to fixate on 
a target placed 10 ft away to control and minimise accommodation. The Ovitz device was 
alternately positioned in front of the right eye (R), then left eye (L), allowing participants 
to maintain a far focus with the non-fixating eye. Using the individual left and right eye 
spherical (sph) and cylindrical (cyl) values, spherical equivalence was calculated using the 
following formula: 

2.3. Plate discipline variables

Batters’ pitch-by-pitch data based on 3D Doppler radar systems (Trackman LLC., 
Stamford, CT) are valuable in quantifying on-field performance because they reflect 
the precise trajectory of each pitched and hit baseball. In this study, batters’ pitch-by- 
pitch data were linked to their vision assessments by the franchise’s analytics department 
and shared with the research team in a deidentified manner. These data were then used to 
model batters’ propensity scores for three plate discipline variables including:
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● O-Swing %, defined as the number of swings at pitches outside the strike zone 
divided by the number of pitches seen outside the strike zone. Lower values are 
preferred.

● Z-Swing %, defined as the number of swings at pitches inside the strike zone divided 
by the number of pitches seen inside the strike zone. Lower values indicate more 
discerning batters.

● Z-Miss %, defined as the number of missed swings at pitches inside the strike zone 
divided by the number of swings at pitches inside the strike zone. Lower values are 
preferred.

The modelled propensity scores can be viewed as a standardisation of the above 
plate discipline variables that account for player heterogeneity in the difficulty of 
pitches faced. For example, a player in AAA is more likely to face pitches of near 
MLB quality, resulting in more swings and misses than at the Rookie level. By 
accounting for game context in this way, the propensity scores tend to be more 
accurate representations of underlying player ability than the raw percentages 
(see Gray, 2002b). Therefore, in order to isolate a batter’s batting ability, we control 
for the quality and context of pitches faced via a generalised additive mixed model 
(GAMM). GAMMs are extensions of general linear mixed models, in which the 
response is assumed to be linearly related to smooth functions of covariates (Wood, 
2004). The flexibility of these models enables us to capture the non-linear relationships 
between pitch location, pitch movement characteristics, and batting outcomes, which 
increases model ability to control for the quality of each pitch. Moreover, the mixed 
model representation allows us to borrow information across players via random 
effects for more precise propensity score estimation, while simultaneously incorporat-
ing fixed effects of interest. In particular, to obtain estimates of each player’s propensity 
score on a given plate discipline variable, a GAMM was fit to all the available pitches 
with player-specific random effects. The model also included cubic spline terms and 
tensor interactions to account for the location of the pitch, the count, the movement of 
the pitch, the speed of the pitch, the spin rate of the pitch, the handedness of the batter, 
and the handedness of the pitcher. The response variable was a binary indicator for 
either a swing decision or the batter making contact with the ball. Specifically, the 
GAMM for O-Swing propensity was trained on all pitches thrown outside the strike 
zone and models the probability of a swing. The GAMM for Z-Swing propensity was 
trained on all the pitches inside of the strike zone and models the probability of 
a swing. The GAMM for Z-Miss propensity was trained on all the swung-at pitches 
inside of the strike zone and models the probability of missing ball contact. These 
models were built via forward selection, where the number and complexity of terms 
was increased until the Akaike Information Criteria (AIC) no longer demonstrated 
improvement. Each propensity score model yields restricted maximum-likelihood 
estimates of batter-specific random effects, corresponding to the expected increase in 
the log-odds of response for each batter, relative to the average position player in the 
sample. These random effect estimates were extracted and standardised, such that 
batter propensity scores have a mean of zero and standard deviation of one for each 
underlying statistic. In general, these propensity scores were nearly normally distrib-
uted across players in the sample (see bottom row of Figure 1).
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2.4. Analytical approach

All analyses were conducted using R 3.5.3 (R Core Team, 2019). A preliminary analysis 
was first performed to check for violations of statistical assumptions. Seven suspected 
outliers from five visual assessment variables (i.e. Contrast Sensitivity, Near-Far 
Quickness, Cardinal Reaction Time, Simple Reaction Time, General Processing Speed) 
were removed. The outlier judgements were informed by the lower and upper whisker 
length of 1.5 inter-quarter range (IQR) in the boxplot. Removing outliers increased the 
overall missing rate to 3.7% in the empirical dataset prior to multiple imputation. Figure 
1 displays the histogram of all the variables used in the nested regression models prior to 
multiple imputation. Assuming data are missing at random, multiple imputation proce-
dures were implemented using the Mice package. Specifically, 20 imputed datasets were 
generated with the method of Predictive Mean Matching and a maximum of 50 iterations 
(Horton & Lipsitz, 2001).

Given the exploratory nature of the study, a set of nested regression models was 
planned for each plate discipline variable. That is, the propensity scores for each plate 
discipline variable were regressed on the visual assessment variables in a nested structure, 
based on the evaluation modality of the vision-related variables. The nested models are 
listed below:

● Model 1: Plate Discipline ~ (intercept) + Eye-Tracking + Visual-Motor + Auto 
Refraction

● Model 2: Plate Discipline ~ (intercept) + Eye-Tracking + Visual-Motor
● Model 3: Plate Discipline ~ (intercept) + Eye-Tracking

Figure 1. Variable histograms with mean values indicated by the dashed lines and the number of 
missing values (out of 71) in parentheses. Units are indicated at the bottom right of each X-axis labels.
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● Null Model: Plate Discipline ~ (intercept)

To validate the predictive power of visual assessment variables on another measure of 
baseball success, a similar set of nested regression models was also performed on the 
League Level variable. Because League Level is ordinal, ordinal logistic regression was 
chosen instead of multiple regression for this analysis. All the nested regression models 
were fit to each of the 20 imputed datasets. To assure that the sequential nesting of 
variables in the model did not mask the effects of visual-motor assessments, an additional 
model was tested: Plate Discipline ~ (intercept) + Visual-Motor. However, such a model 
showed descriptively smaller R2 values than Model 3 and no statistically better fit than the 
Null Model on all the outcome variables (i.e. propensity scores associated with plate 
discipline variables and league level). The model was thus dropped from further 
considerations.

For a given regression model, its final parameter estimates were based on pooling 
the estimates generated when fit to the imputed datasets (D. B. Rubin, 1987). This 
pooling helped account for the uncertainty associated with the missing data values. The 
nested models for a given outcome were treated as competing ones and compared 
based on overall goodness-of-fit. In particular, Wald’s test was used to compare nested 
models on a given plate discipline propensity and likelihood ratio X2 test was used for 
comparing nested models on League Level (Meng & D. B. Rubin, 1992). We computed 
estimates of R2 for multiple regression models and pseudo R2 (i.e. R2

I ) for ordinal 
logistic regression models. Because the interpretation of pseudo R2 is not as informative 
as R2, we also obtained Pearson X2 statistic in the Hosner-Lemeshow tests (Lemeshow 
& Hosmer, 1982) to help evaluate the overall goodness-of-fit for the ordinal logistic 
regression models on League Level. The g parameter in the Hosner-Lemeshow tests was 
set as 10 (Lemeshow & Hosmer, 1982). For a given set of nested model test, a final 
model was considered when showing reasonable overall goodness-of-fit, accounting for 
meaningful variance in the outcome, and remaining parsimoniously specified (i.e. 
minimising the number of parameters in a given model). Although the alpha level 
was set at .05, model comparisons whose p-values approached this level (i.e. p < .10) 
were considered in the presence of other favourable evidence (e.g. effect size and 
parsimoniousness).

3. Results

Because four nested models were specified for a given outcome variable, model compar-
isons and selections were necessary to reach the final model that balanced parsimonious-
ness and explanative power. Table 2 shows the p-values associated with the model 
comparison tests and the R2 estimate for each given model. Both these results were 
taken into consideration when selecting the final model for each outcome variable. Figure 
2 illustrates the statistical significance of individual visual assessment variables in each 
selected regression model for a given outcome variable. The Appendix contains model 
fits for the individual visual assessment variables (Appendix 1), confidence intervals for 
the R2 estimates (Appendix 2), and the p values from comparing vision models on a given 
outcome variable (Appendix 3).
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3.1. O-Swing propensity

Model 3 was selected for further consideration because it was the only tested model 
showing a marginally significantly better fit than the Null Model (p = .07), while 
demonstrating substantial predictive power wherein the visual assessment variables 
accounted for nearly 28% of the variance in O-Swing Propensity, R2 = .28. Model 3 
results revealed that eye-tracking variables of Smooth Pursuit Accuracy, t(56.84) = −2.10, 
p = .04, and General Processing Speed, t(56.58) = 2.04, p = .046, were significant 
predictors for O-Swing Propensity. This observation indicates that better smooth pursuit 
accuracy and faster information processing speed were associated with lower propensity 
to swing at pitches outside the strike zone.

Table 2. p-values associated with vision-vs-null model comparisons and R2 estimates for the vision 
models.

p value R2 value
Model 1 

vs. Null
Model 2 

vs. Null
Model 3 

vs. Null
Model 1 Model 2 Model 3

O-Swing Propensity 0.56 0.38 0.07 0.33 0.33 0.28
Z-Swing Propensity 0.07 0.05 0.35 0.23 0.22 0.09
Z-Miss Propensity 0.29 0.3 0.95 0.21 0.19 0.03
League Level <.001 <.001 <.001 0.16† 0.15† 0.13†

Note that text is bolded if p-values were less than .05, and boxed cells indicate models that were further evaluated. † 
pseudo-R2 s (R2

L ) values, calculated using model deviance estimates based on measures of likelihood, whose inter-
pretation is not the same as R2 and requires caution.

Figure 2. Slope parameter estimates and 95% confidence intervals (CIs) of visual assessment variables 
in the selected regression models on O-Swing Propensity (black), Z-Swing Propensity (white), and 
League Level (grey). Gen. = General. * p <.05, *** p <.001.
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3.2. Z-Swing propensity

Model 2 was selected for further consideration as it showed a significantly better fit than 
the Null Model, p = .05, while demonstrating substantial predictive power from visual 
assessment variables, accounting for 22% of the variance, R2 = .22. Model 2 results 
indicated that eye-tracking variables of General Oculomotor Speed, t(53.64) = 2.37, p 
= .03, and General Processing Speed, t(53.49) = 2.23, p = .03, were significant predictors 
for Z-Swing Propensity. In both cases, better performance on these assessments corre-
sponded to lower swing rates for pitches inside the strike zone, implying that individuals 
with better visual abilities are more discerning in their swings and tend to swing less at 
pitches.

3.3. Z-Miss propensity

None of the tested models showed better fit than the Null Model and thus no final model 
was selected for this plate discipline outcome variable.

3.4. League level

Model 3 was selected for further consideration due to its parsimony compared to Model 1 
and Model 2, while all the three tested models demonstrated better fits than the Null 
Model, ps <.001. This decision is also supported by the Hosner–Lemeshow test results, 
showing that Model 3 demonstrated better fit to the data, X2 (44) = 51.94, p > .19, than 
Model 1, X2(44) = 64.38, p = .02, and Model 2, X2(44) = 64.33, p = .02. Model 3 results 
demonstrated that the eye-tracking variable of General Oculomotor Speed, t 
(53.48) = −4.66, p < .001, was a significant predictor of League Level, while General 
Oculomotor Latency, t(43.83) = −1.85, p = .07, trended towards significance. These 
findings indicated that athletes who reach higher leagues tend to have faster oculomotor 
movement speeds.

4. Discussion

Phrases like “keep your eyes on the ball” and “you can’t hit what you can’t see” under-
score the important role that visual perception plays in baseball performance. Despite 
contributions from past studies, uncertainty still exists about the nature of visual skills 
that contribute to hitting performance in such highly demanding interceptive actions. In 
particular, while several studies have linked better anticipatory skills with greater batting 
performance (Kato & Fukuda, 2002; Müller & Fadde, 2016; Müller et al., 2017; Paull & 
Glencross, 1997), less is known about the role of oculomotor and visual-perceptual skills. 
The current study aimed to contribute to this area of understanding by evaluating the 
links between visual skills and plate discipline statistics among professional baseball 
batters in a naturalistic dataset. Validated visual assessments based on auto-refraction 
(A. Rubin & Harris, 1995), eye-tracking (Murray et al., 2019), and visual-motor control 
(Wang et al., 2015), commissioned by a professional baseball franchise during the 
preseason, were mapped to plate discipline performance modelled using Trackman 
pitch-by-pitch data collected throughout the ensuing season. Due to the exploratory 
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nature of the study, several competing models and the null model were tested against 
each other on criteria of overall goodness-of-fit, model parsimoniousness, and effect size 
(i.e. R2).

Results demonstrate that, compared to auto-refraction and visual-motor measures, 
several oculomotor eye-tracking measures stood out in predicting plate discipline per-
formance and the athlete’s highest attained league level. In particular, batters with faster 
oculomotor and processing speeds, as well as better smooth pursuit accuracy, tended to 
be more discerning in their swings by lowering the swing propensity regardless of pitch 
location (i.e. inside/outside strike zone), while batters with faster oculomotor speeds also 
tended to compete in higher professional leagues. Given the observation that batters who 
are less likely to swing at strikes actually show a higher chance of making ball contact to 
generate fair plays and obtain walks (Albert, 2017), this pattern of findings is consistent 
with the hypothesis that better visual skills predict better plate discipline performance 
(with the exception for Z-Miss Propensity), as well as higher achieved League Level.

The present evidence informs practitioners through the comparison of a relatively 
wide range of visual assessments that can be linked to performance in baseball batting. 
Specifically, visual measures based on eye tracking emerged with predictive potential on 
both O-Swing Propensity (R2 = 0.28) and Z-Swing Propensity (R2 = 0.22). The final 
model implies that an individual with 1% better smooth pursuit accuracy, or 10 ms faster 
oculomotor/processing speeds would be 2% more discerning in swinging relative to his 
peers. Oculomotor speed also predicted the highest attainted league level, a different 
means to characterise baseball proficiency. According to the estimated slope parameter of 
the odds ratio metric in the final ordinal logistic regression model, a batter will be 1.22 
times more likely to play at a higher league level than lower ones if the batter has 10 ms 
faster oculomotor speeds. An important next step in this exploratory research will be to 
validate the current findings in independent samples. Contingent on such replications, 
these findings have important implication for the promise of utilising oculomotor 
assessments as a means to scout baseball batters based on these evaluations.

The finding that oculomotor and information processing speeds, as well as smooth 
pursuit accuracy, was most predictive on O-Swing and Z-Swing Propensity bears several 
conceptual implications. First, as previously outlined, expert batters need to maintain ball 
tracking for at least 80 ms after the moment of pitch release to anticipate the pitch 
location at above-chance levels (Müller et al., 2017). Faster information processing speeds 
and enhanced pitch tracking accuracy, especially at the start of the pitch flight while the 
ball is travelling at the lowest range of angular velocity, may help batters lower O-Swing 
Propensity through sharpened recognition of pitches outside the strike zone. Similarly, 
the sharpened pitch-location recognition through faster oculomotor and information 
processing speeds may also help batters be more discerning when facing pitches inside 
the strike zone. In a follow-up analysis of the current sample, we obtained a marginally 
significant positive bivariate correlation (r = .18, p = .06) between Z-Swing Propensity 
and Z-Miss Propensity, implying that a more discerning batter is also more likely to make 
contact with pitches going inside the strike zone. This view is consistent with the idea that 
swing actions from more discerning batters are more likely to result in hitting into fair 
plays (Laby et al., 2019).

Second, better recognition of pitch location is probably not sufficient to make a batter 
more discerning in swinging, given that elite batters tend to “sit on fastballs” (Gray, 
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2002b). Sitting on a fastball refers to a proactive strategy of baseball batters to always 
anticipate a fastball because fastballs are most common and require the greatest speed 
challenge (Canãl-Bruland et al., 2015), creating a bias towards swinging. Considering that 
faster processing speed characterises greater competence in switching responses accord-
ing to visual stimuli, batters with faster information processing speed may be more 
discerning in their swings because they can better inactivate the swing initialisations 
triggered by “sitting on fastballs” (Muraskin et al., 2015).

Third, the modest R2 values obtained in the most complex model group (see those of 
Model 1 in Table 2) indicate that factors other than the included visual assessments are 
contributing substantially to the plate discipline measures. For instance, baseball batters are 
reported to utilise information from auditory and tactile feedback in performance, although 
they rely more on visual feedback (Gray, 2009). Within the current range of visual 
assessments, information redundancy also exists, consistent with past studies reporting 
that the majority of variance in a battery of nine visual-motor tasks developed by Nike is 
accounted for by three latent factors (Poltavski & Biberdorf, 2015; Wang et al., 2015). In the 
current study, for instance, despite the fact that many baseball teams work with optometric 
professionals, the clinical measure of auto-refraction was not found to predict plate 
discipline measures or highest attained league level given the presence of other visual 
assessments in the models. It is possible that good optometric assessments are necessary 
conditions for batting excellence. However, among batters who demonstrate superior vision 
as a group, the utility of auto-refraction to capture variance in batting performance might 
have been limited. It is also notable that performance on the visual-motor assessments only 
contributed limited predictive power to these models, given past reports that such evalua-
tions did correlate with season-wise “counting statistics” (e.g. on-base percentage, walk rate 
and strikeout rate; Burris et al., 2018) and career plate discipline measures (top versus 
bottom quintile of the sample; Laby et al., 2018). Those studies, however, included larger 
samples (252 and 450 athletes for the Burris and Laby studies, respectively), and therefore 
the current sample may have had limited capacity in detecting such relationships. 
Alternatively, the current modelling approach in this study may indicate that visual- 
motor abilities do not contribute to plate discipline given the presence of eye-tracking 
measures. Future studies with larger samples may offer the opportunity to test these 
hypotheses.

Lastly, none of the assessed visual skills were found to predict Z-Miss Propensity. This 
result is interesting because it may suggest strong determinants of swinging and missing, 
other than visual skills. Since it has been reported that striking a 90 mph fastball requires 
keeping the temporal error within ± 9 ms and spatial error within ± 1.27 cm (Gray, 
2002a; Regan, 1997), it could be that Z-Miss propensity relies on not only “seeing” the 
pitch but also swinging with temporal and spatial accuracy (Lee, 1998). Therefore, the 
ability of making accurate swing actions may be a test-worthy factor together with visual 
skills for predicting Z-Miss Propensity in future.

5. Future directions and limitations

The present findings must be taken within the context of several limitations, but also 
invite a number of important future research questions. First, as noted above, the 
analytical approach was exploratory wherein alternative models were considered in the 
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presence of multiple sources of evidence, including goodness-of-fit, parsimony, and effect 
size. The study included a “convenience sample” enabled through a research collabora-
tion, and therefore there is a strong need to replicate the present findings in independent, 
larger and experimentally controlled samples. With the recent adoption of eye-tracking 
measures by USA Baseball (RightEye, 2019) in the player development pipeline, there 
should be potential opportunities for replication and further investigation using the 
current exploratory findings as the basis for more explicit hypothesis tests.

Second, although the current study included a wide range of visual skill assessments, 
other important abilities may have been missed in these evaluations. For instance, 
parafoveal visual skills have been shown to vary across individuals with some individuals 
demonstrating a strategy of “parafoveal tracking” when facing pitches in cricket (Croft 
et al., 2010) and similar strategies in other interceptive sports, such as table tennis (Ripoll 
& Fleurance, 1988). Therefore, it may be important to include parafoveal visual skills in 
future assessment battery.

Third, the current findings provide a useful framework for understanding which visual 
skills are important for batting performance, opening the door for innovations in vision- 
based and/or virtual-reality-based training protocols to improve batting performance. In 
particular, there has been rapid development of digital training tools that are based on 
perceptual learning protocols that can be deployed in natural training contexts to promote 
sports-specific visual and cognitive abilities (Appelbaum & Erickson, 2018; Wilkins & 
Appelbaum, 2019). With the increased use of these training programs, however, it will be 
important for research to adhere to a greater level of scientific rigour, including pre- 
registration, randomisation, and placebo control, all features of a current study underway 
by our research team (Appelbaum et al., 2018). Nonetheless, the finding of the present 
study may serve as a steppingstone for future training studies by highlighting visual skills 
that can be targeted in such interventions (see also Appelbaum et al., 2016).

Lastly, while the current findings point towards possible use of oculomotor assess-
ments as a means to scout batting talent, there are likely causal factors that influence the 
development of these skills not testable in the current design. As such, it remains an open 
question as to whether batters reach higher league levels because natural abilities, or if 
these capabilities are honed over an athlete’s development. Future longitudinal studies 
may help to arbitrate this question.

6. Conclusion

The present exploratory research findings indicate that oculomotor skills predict specific 
baseball hitting abilities. These findings suggest a possibly valuable source of scouting 
data and targets for vision-based training programs that may improve batting perfor-
mance. As such, future hypothesis-driven research may use the characteristics identified 
here to guide studies testing talent identification or training studies aimed at improving 
on-field performance.

14 S. LIU ET AL.



Acknowledgments

The authors would like to thank the players, coaches, trainers and management who contributed 
to this study.

Disclosure statement

Authors SL, KB and FRE declare that they have no conflict of interest. Author LGA previously 
performed paid consulting for RightEye LLC.

Funding

This research was funded by grant support to L.G.A. through the United States Army Research 
Office [W911NF-15-1-0390].

ORCID

Sicong Liu http://orcid.org/0000-0003-1078-7006
Lawrence Gregory Appelbaum http://orcid.org/0000-0002-3184-6725

Data availability statement

De-identified data will be available upon requests.

References

Albert, J. (2017). Visualizing baseball. In Visualizing Baseball. https://doi.org/10.1201/ 
9781315149530

Appelbaum, L. G., & Erickson, G. (2018). Sports vision training: A review of the state-of-the-art in 
digital training techniques. International Review of Sport and Exercise Psychology, 11(1), 
160–189. https://doi.org/10.1080/1750984X.2016.1266376

Appelbaum, L. G., Liu, S., Hilbig, S., Rankin, K., Naclario, M., Asamoa, E., LaRue, J., & Burris, K. 
(2018). Sports vision training in collegiate baseball batters. Open Science Framework. https://doi. 
org/10.17605/OSF.IO/496RX

Appelbaum, L. G., Lu, Y., Khanna, R., & Detwiler, K. R. (2016). The effects of sports vision training 
on sensorimotor abilities in collegiate softball athletes. Athletic Training & Sports Health Care, 8 
(4), 154–163. https://doi.org/10.3928/19425864-20160314-01

Bahill, A., & Laritz, T. (1984). Why can’t batters keep their eyes on the ball? American Scientist, 72 
(3), 249–253. https://doi.org/10.1186/scrt73

Burris, K., Vittetoe, K., Ramger, B., Suresh, S., Tokdar, S. T., Reiter, J. P., & Appelbaum, L. G. 
(2018). Sensorimotor abilities predict on-field performance in professional baseball. Scientific 
Reports, 8(1), 116. https://doi.org/10.1038/s41598-017-18565-7

Canãl-Bruland, R., Filius, M. A., & Oudejans, R. R. D. (2015). Sitting on a fastball. Journal of Motor 
Behavior, 47(4), 267–270. https://doi.org/10.1080/00222895.2014.976167

Core Team, R. (2019). R: A language and environment for statistical computing. In R Foundation 
for Statistical Computing. https://doi.org/10.1017/CBO9781107415324.004

Croft, J. L., Button, C., & Dicks, M. (2010). Visual strategies of sub-elite cricket batsmen in 
response to different ball velocities. Human Movement Science, 29(5), 751–763. https://doi. 
org/10.1016/j.humov.2009.10.004

DHHS. (2015). Secretary’s advisory committee on human research protections. Attachment A: 
Human subjects research implications of “big data” studies.

INTERNATIONAL JOURNAL OF PERFORMANCE ANALYSIS IN SPORT 15

https://doi.org/10.1201/9781315149530
https://doi.org/10.1201/9781315149530
https://doi.org/10.1080/1750984X.2016.1266376
https://doi.org/10.17605/OSF.IO/496RX
https://doi.org/10.17605/OSF.IO/496RX
https://doi.org/10.3928/19425864-20160314-01
https://doi.org/10.1186/scrt73
https://doi.org/10.1038/s41598-017-18565-7
https://doi.org/10.1080/00222895.2014.976167
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/j.humov.2009.10.004
https://doi.org/10.1016/j.humov.2009.10.004


Gray, R. (2002a). Behavior of college baseball players in a virtual batting task. Journal of 
Experimental Psychology: Human Perception and Performance, 28(5), 1131–1148. https://doi. 
org/10.1037/0096-1523.28.5.1131

Gray, R. (2002b). “Markov at the bat”: A model of cognitive processing in baseball batters. 
Psychological Science, 13(6), 542–547. https://doi.org/10.1111/1467-9280.00495

Gray, R. (2009). How do batters use visual, auditory, and tactile information about the success of 
a baseball swing? Research Quarterly for Exercise and Sport, 80(3), 491–501. https://doi.org/10. 
1080/02701367.2009.10599587

Hoffman, L. G., Polan, G., & Powell, J. (1984). The relationship of contrast sensitivity functions to 
sports vision. Journal of the American Optometric Association, 55(10), 747–752. https://eur 
opepmc.org/article/med/6491120

Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software 
packages for regression models with missing variables. The American Statistician, 55(3), 
244–254. https://doi.org/10.1198/000313001317098266

Hunfalvay, M., Roberts, C.-M., Ryan, W., Murray, N., Tabano, J., & Martin, C. (2019). An 
investigation of the visual behavior of professional baseballers prior to the execution of batting: 
Evidence for oculomotor warm up, attentional processes or pre-performance routines? 
International Journal of Sports Science, 7(6), 215–222. https://doi.org/10.5923/j.sports. 
20170706.02

Kato, T., & Fukuda, T. (2002). Visual search strategies of baseball batters: Eye movements during 
the preparatory phase of batting. Perceptual and Motor Skills, 94(2), 380–386. https://doi.org/10. 
2466/pms.2002.94.2.380

Klemish, D., Ramger, B., Vittetoe, K., Reiter, J. P., Tokdar, S. T., & Appelbaum, L. G. (2018). Visual 
abilities distinguish pitchers from hitters in professional baseball. Journal of Sports Sciences, 36 
(2), 171–179. https://doi.org/10.1080/02640414.2017.1288296

Laby, D. M., Kirschen, D. G., & Govindarajulu, U. (2019). The effect of visual function on the 
batting performance of professional baseball players. In press. Scientific Reports, 9(1), 16847. 
https://doi.org/10.1038/s41598-019-52546-2

Laby, D. M., Kirschen, D. G., Govindarajulu, U., & Deland, P. (2018). The hand-eye coordination 
of professional baseball players: The relationship to batting. Optometry and Vision Science, 95 
(7), 557–567. https://doi.org/10.1097/OPX.0000000000001239

Laby, D. M., Rosenbaum, A. L., Kirschen, D. G., Davidson, J. L., Rosenbaum, L. J., Strasser, C., & 
Mellman, M. F. (1996). The visual function of professional baseball players. American Journal of 
Ophthalmology, 122(4), 476–485. https://doi.org/10.1016/S0002-9394(14)72106-3

Land, M. F., & McLeod, P. (2000). From eye movements to actions: Batsmen hit the ball. Nature 
Neuroscience, 3(12), 1340. https://doi.org/10.1038/81887

Lebeau, J.-C., Liu, S., Sáenz-Moncaleano, C., Sanduvete-Chaves, S., Chacón-Moscoso, S., 
Becker, B. J., & Tenenbaum, G. (2016). Quiet eye and performance in sport: A meta-analysis. 
Journal of Sport and Exercise Psychology, 38(5), 441–457. https://doi.org/10.1123/jsep.2015-0123

Lee, D. N. (1998). Guiding movement by coupling taus. Ecological Psychology, 10(3–4), 221–250. 
https://doi.org/10.4324/9780203936672

Lemeshow, S., & Hosmer, D. W. (1982). A review of goodness of fit statistics for use in the 
development of logistic regression models. American Journal of Epidemiology, 115(1), 92–106. 
https://doi.org/10.1093/oxfordjournals.aje.a113284

Mann, D. L., Spratford, W., & Abernethy, B. (2013). The head tracks and gaze predicts: How the 
world’s best batters hit a ball. PLoS ONE, 8(3), e58289. https://doi.org/10.1371/journal.pone. 
0058289

Mann, D. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in 
sport: A meta-analysis. Journal of Sport and Exercise Psychology, 29(4), 457–478. https://doi.org/ 
10.1123/jsep.29.4.457

Meng, X. L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data 
sets. Biometrika, 79(1), 103–111. https://doi.org/10.1093/biomet/79.1.103

16 S. LIU ET AL.

https://doi.org/10.1037/0096-1523.28.5.1131
https://doi.org/10.1037/0096-1523.28.5.1131
https://doi.org/10.1111/1467-9280.00495
https://doi.org/10.1080/02701367.2009.10599587
https://doi.org/10.1080/02701367.2009.10599587
https://europepmc.org/article/med/6491120
https://europepmc.org/article/med/6491120
https://doi.org/10.1198/000313001317098266
https://doi.org/10.5923/j.sports.20170706.02
https://doi.org/10.5923/j.sports.20170706.02
https://doi.org/10.2466/pms.2002.94.2.380
https://doi.org/10.2466/pms.2002.94.2.380
https://doi.org/10.1080/02640414.2017.1288296
https://doi.org/10.1038/s41598-019-52546-2
https://doi.org/10.1097/OPX.0000000000001239
https://doi.org/10.1016/S0002-9394(14)72106-3
https://doi.org/10.1038/81887
https://doi.org/10.1123/jsep.2015-0123
https://doi.org/10.4324/9780203936672
https://doi.org/10.1093/oxfordjournals.aje.a113284
https://doi.org/10.1371/journal.pone.0058289
https://doi.org/10.1371/journal.pone.0058289
https://doi.org/10.1123/jsep.29.4.457
https://doi.org/10.1123/jsep.29.4.457
https://doi.org/10.1093/biomet/79.1.103


Müller, S., & Fadde, P. J. (2016). The relationship between visual anticipation and baseball batting 
game statistics. Journal of Applied Sport Psychology, 28(1), 49–61. https://doi.org/10.1080/ 
10413200.2015.1058867

Müller, S., Fadde, P. J., & Harbaugh, A. G. (2017). Adaptability of expert visual anticipation in 
baseball batting. Journal of Sports Sciences, 35(17), 1682–1690. https://doi.org/10.1080/ 
02640414.2016.1230225

Muraskin, J., Sherwin, J., & Sajda, P. (2015). Knowing when not to swing: EEG evidence that 
enhanced perception-action coupling underlies baseball batter expertise. NeuroImage, 123, 
1–10. https://doi.org/10.1016/j.neuroimage.2015.08.028

Murray, N., Kubitz, K., Roberts, C.-M., Hunfalvay, M., Bolte, T., & Tyagi, A. (2019). An examina-
tion of the oculomotor behavior metrics within a suite of digitized eye tracking tests. IEEE 
J Transl Eng Health Med, 5(4), 1–5. https://righteye.com/wp-content/uploads/2019/02/Murray- 
Kubitz-Roberts-Hunfalvay-Bolte-Tyagi-2019.pdf

Paull, G., & Glencross, D. (1997). Expert perception and decision making in baseball. International 
Journal of Sport Psychology, 28(1), 35–56. https://psycnet.apa.org/record/1997-04119-004

Poltavski, D., & Biberdorf, D. (2015). The role of visual perception measures used in sports vision 
programmes in predicting actual game performance in Division I collegiate hockey players. 
Journal of Sports Sciences, 33(6), 597–608. https://doi.org/10.1080/02640414.2014.951952

Regan, D. (1997). Visual factors in hitting and catching. Journal of Sports Sciences, 15(6), 533–558. 
https://doi.org/10.1080/026404197366985

RightEye. (2019). USA baseball and optometrists team up to improve players’ athletic abilities 
through sports vision. PR Newswire. https://www.prnewswire.com/news-releases/righteye-usa- 
baseball-and-optometrists-team-up-to-improve-players-athletic-abilities-through-sports- 
vision-300871734.html

Ripoll, H., & Fleurance, P. (1988). What does keeping one’s eye on the ball mean? Ergonomics, 31 
(11), 1647–1654. https://doi.org/10.1080/00140138808966814

Rubin, A., & Harris, W. F. (1995). Refractive variation during autorefraction: Multivariate 
distribution of refractive status. Optometry and Vision Science, 72(6), 403–410. https://doi. 
org/10.1097/00006324-199506000-00008

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. John Wiley & Sons. https:// 
doi.org/10.1002/9780470316696

Spering, M., & Gegenfurtner, K. R. (2008). Contextual effects on motion perception and smooth 
pursuit eye movements. Brain Research, 1225, 76–85. https://doi.org/10.1016/j.brainres.2008.04.061

Voss, M. W., Kramer, A. F., Basak, C., Prakash, R. S., & Roberts, B. (2010). Are expert athletes 
“expert” in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. 
Applied Cognitive Psychology, 24(6), 812–826. https://doi.org/10.1002/acp.1588

Wang, L., Krasich, K., Bel-Bahar, T., Hughes, L., Mitroff, S. R., & Appelbaum, L. G. (2015). 
Mapping the structure of perceptual and visual-motor abilities in healthy young adults. Acta 
Psychologica, 157, 74–84. https://doi.org/10.1016/j.actpsy.2015.02.005

Watts, R. G., & Bahill, A. T. (1991). Keep your eye on the ball: Curve balls, knuckleballs, and fallacies 
of baseball. W. H. Freeman and Company.

INTERNATIONAL JOURNAL OF PERFORMANCE ANALYSIS IN SPORT 17

https://doi.org/10.1080/10413200.2015.1058867
https://doi.org/10.1080/10413200.2015.1058867
https://doi.org/10.1080/02640414.2016.1230225
https://doi.org/10.1080/02640414.2016.1230225
https://doi.org/10.1016/j.neuroimage.2015.08.028
https://righteye.com/wp-content/uploads/2019/02/Murray-Kubitz-Roberts-Hunfalvay-Bolte-Tyagi-2019.pdf
https://righteye.com/wp-content/uploads/2019/02/Murray-Kubitz-Roberts-Hunfalvay-Bolte-Tyagi-2019.pdf
https://psycnet.apa.org/record/1997-04119-004
https://doi.org/10.1080/02640414.2014.951952
https://doi.org/10.1080/026404197366985
https://www.prnewswire.com/news-releases/righteye-usa-baseball-and-optometrists-team-up-to-improve-players-athletic-abilities-through-sports-vision-300871734.html
https://www.prnewswire.com/news-releases/righteye-usa-baseball-and-optometrists-team-up-to-improve-players-athletic-abilities-through-sports-vision-300871734.html
https://www.prnewswire.com/news-releases/righteye-usa-baseball-and-optometrists-team-up-to-improve-players-athletic-abilities-through-sports-vision-300871734.html
https://doi.org/10.1080/00140138808966814
https://doi.org/10.1097/00006324-199506000-00008
https://doi.org/10.1097/00006324-199506000-00008
https://doi.org/10.1002/9780470316696
https://doi.org/10.1002/9780470316696
https://doi.org/10.1016/j.brainres.2008.04.061
https://doi.org/10.1002/acp.1588
https://doi.org/10.1016/j.actpsy.2015.02.005


Wilkins, L., & Appelbaum, L. G. (2019). An early review of stroboscopic visual training: Insights, 
challenges and accomplishments to guide future studies. International Review of Sport and 
Exercise Psychology, 1–16. https://doi.org/10.1080/1750984X.2019.1582081

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized 
additive models. Journal of the American Statistical Association, 99(467), 673–686. https://doi. 
org/10.1198/016214504000000980

Appendices

Appendix 1

O-Swing Propensity 
(Model 3)

Z-Swing Propensity 
(Model 2)

League level (Model 3)

Estimate (SE) p value Estimate (SE) p value Estimate (SE) p value
Dynamic Visual Acuity (s) −1.064 (1.148) 0.357 −0.740 (1.264) 0.560 −3.594 (2.539) 0.163
Cardinal Reaction Time (s) 1.503 (3.305) 0.651 2.939 (3.531) 0.409 6.147 (6.392) 0.341
Simple Reaction Time (s) 1.364 (1.677) 0.420 0.785 (1.859) 0.675 −3.328 (3.522) 0.349
Smooth Pursuit Accuracy (%) −0.050 (0.024) 0.040* −0.020 (0.028) 0.472 0.031 (0.026) 0.241
General Oculomotor Latency (s) 2.109 (2.421) 0.387 0.869 (3.026) 0.776 −9.579 (5.190) 0.072
General Oculomotor Speed (s) 2.723 (1.859) 0.148 5.175 (2.186) 0.022* −18.27 (3.924) < 0.001***
General Processing Speed (s) 4.199 (2.059) 0.046* 6.043 (2.706) 0.030* −5.861 (4.069) 0.156
Visual Clarity (logMAR) −2.280 (1.293) 0.084
Contrast Sensitivity (log) −0.049 (0.656) 0.940
Near-Far Quickness (score) 0.049 (0.025) 0.055
Perception Span (score) −0.006 (0.012) 0.597
Multiple Object Tracking (score) 0.000 (0.000) 0.558
Reaction Time (s) 10.19 (6.078) 0.099

Slope parameter estimates (and SEs) and p values for the final regression models.The Visual-Motor variables are on highly 
variable scales and therefore produce widely variable parameter estimates.

Appendix 2

Model 1Model 2Model 3Null modelO-Swing Propensity32.86 (15.21, 50.82)32.63 (14.98, 50.63)27.92 (11.11, 46.25)0 (0, 
.5.4)Z-Swing Propensity22.52 (7.0, 41.16)21.56 (6.6, 39.81)9.3 (0.55, 25.53)0 (0, .5.4)Z-Miss Propensity21.22 (6.21, 39.71) 
18.72 (4.7, 37.06)3.05 (0.4, 15.86)0 (0, .5.4) 
Model R2 estimates with 95% confidence intervals in parentheses (bolded if the associated models were chosen as final 

models).

Appendix 3

p valueModel 1 vs. Model 2Model 2 vs. Model 3Model 1 vs. Model 3O-Swing Propensity0.740.780.9Z-Swing 
Propensity0.580.110.17Z-Miss Propensity0.230.070.08League Level0.10.640.43 
The p values from comparing vision models on a given outcome variable.
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